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Abstract. Recent efforts in applying implicit networks to solve inverse problems in imaging have achieved com-
petitive or even superior results when compared to feedforward networks. These implicit networks
only require constant memory during backpropagation, regardless of the number of layers. However,
they are not necessarily easy to train. Gradient calculations are computationally expensive because
they require backpropagating through a fixed point. In particular, this process requires solving a
large linear system whose size is determined by the number of features in the fixed point iteration.
This paper explores a recently proposed method, Jacobian-free Backpropagation (JFB), a fast and
easy-to-implement scheme for backpropagation that circumvents such calculation in the context of
image deblurring problems. Our results show that JFB is comparable against fine-tuned optimization
schemes, state-of-the-art (SOTA) feedforward networks, and existing implicit networks at a reduced
computational cost.

1. Introduction. Inverse problems consist of recovering a signal, such as an image or a
parameter of a partial differential equation (PDE), from noisy measurements, where direct
observation of the signal is not possible. Deep learning techniques, for instance, have been
utilized to acquire high-quality medical images like magnetic resonance imaging (MRI) and
computed tomography (CT) [45, 3, 44].

Conventional deep learning approaches for solving inverse problems use deep unrolling
[2, 7, 33, 43, 29, 28, 8], which utilizes a fixed number of iterations usually chosen heuristically.
A deep network is “unfolded” into a wider and shallower network, where each layer is split
into multiple sub-layers. While this method allows the network to learn complex patterns
in the input data, it suffers from overfitting and the well-known vanishing gradient problem
[23], not to mention the lack of flexibility compared to other network structures [14, 35].
Moreover, they are challenging to train due to memory constraints during backpropagation.
Another line of work, feed-forward denoising convolutional neural networks [46, 47, 48, 39],
uses deep convolutional neural networks (CNNs) to learn the residuals between the clean
images and noisy observations instead of directly reconstructing the clean underlying images.
These end-to-end models are not trained for a particular forward model, so they may require
large amounts of labeled data for training [14, 35].

Recently, deep equilibrium models (DEQs) were proposed [5, 6, 42, 16, 26, 36, 37]. DEQs
use implicit networks with weight-tying, input-injected layers that propel the dynamics of
latent space representation. Training involves backpropagating through a fixed point of the
layer using implicit differentiation, where the number of layers can be deemed infinite. This
feature allows implicit networks to save memory costs significantly since there is no need to
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save any intermediate values on the backpropagation graph. Despite yielding fixed memory
costs and matching performances of other state-of-the-art (SOTA) models, DEQs are still very
expensive to train because backpropagation requires the computation of a Jacobian-based
linear system at every gradient evaluation [35, 13]. Further, as over-parametrized networks,
running more iterations at test time cannot increase their performances. [36] Therefore, a
Jacobian-Free Backpropagation (JFEB) approach was recently introduced to avoid solving the
linear system during training [10].

The theory of JFB allowed us to replace the Jacobian matrix with the identity under cer-
tain conditions. JFB not only maintained a fixed memory cost but also avoided a substantial
computational cost while ensuring a descent direction. [10] It has performed well in image
classification tasks [10], computational tomography [21, 22, 19], traffic routing [21], and find-
ing the shortest paths [31]. A variation of JEB, where the inverse Jacobian was approximated
as a perturbed identity matrix and falls back to JEB when the approximation yields a huge
norm compared to the true inversion [37], also proved to be successful in image classification.
In this paper, we investigate its effectiveness in training implicit networks for inverse problems
arising in image deblurring '.

2. Mathematical Background.

2.1. Problem Setup. We have N noisy blurred images {d;}Y.; C R" that we refer to as
measurements. The underlying original images, denoted as {xz}f\;l C R", are hidden from
the experimenter(s). We use the model:

(2.1) d=Ax +¢

where the forward operator A is a mapping from signal space of original images to measure-
ment space and € € R™ is a noise term that models measurement errors. In this work, we
deal with image deblurring, where the forward process is a Gaussian blur. The value of each
pixel in a measurement is a weighted average of its neighborhood under a Gaussian kernel
with discretized weights of a 2-dimensional Gaussian density, plus noise generated from the
hypothesized measurement process.

2.2. Traditional Optimization for Deblurring. A natural idea is to apply A~! to Eq. 2.1
and obtain z* = A71(d — €) when A is invertible, which is the case in denoising (A = I) and
deblurring (A is the Toeplitz matrix of a convolution operator). This can amplify the noise
and result in really bad reconstructions when A is ill-conditioned. Therefore, we estimate the
true image z* by formulating a regularized optimization problem that minimizes the difference
between the reconstructed image and the observed image:

1
(2.2) ot = arg g}lin 5l = d|[32 + AR(z)

where A\ > 0 is a tunable parameter, R(x) is a regularizer chosen based on common practice
[15] or potentially learned from given data [4, 18, 20, 1]. We can solve Eq. 2.2 by applying the

! Access the GitHub repository at https://github.com/lliu58b/Jacobian-free-Backprop-Implicit-Networks
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gradient descent algorithm, with a common choice of R(z) = %||z|/2,. However, we observe
in our numerical experiments that results are not ideal (low SSIM values for reconstructed
images). To this end, we explore the use of use of implicit networks in this work.

2.3. Implicit Networks and Challenges. Implicit networks [9] are newly proposed models
that also leverage the dataset {(d;,z;)}*, and are capable of representing a wide range of
feedforward models. The idea is to find a fixed point for their weight-tying layers, modeled
as a non-linear function 7'(-), and map it to the inference space. We formulate our implicit
network as follows:

[Equilibrium equation] Tg(x) ==z

(2.3) [Prediction equation] z*(d) = x

The iteration to find the fixed point reads:
(2.4) 2t = 2k (Vall Aok = dill2: + So(a})) = To(a})

where 1 > 0 is step size, K is the number of iterations (layers) in our neural network Ng(+), and
Se(+) is a trainable network containing all the weights of Ng(-). Note that the [Equilibrium
equation] is satisfied as K — oo when Tg(+) is a contraction. The output of the network is
No(d) := x*(d), given by the [Prediction equation]. This iterative scheme is called DE-GRAD
[14].

To train the weights ©, we perform implicit differentiation on the equilibrium equation in
(2.3)

dx* _ dT@(;L’*) dx* aT@(Jj*) rearragterms 7 dT@(Q?*) dx* _ 8T@(:L‘*)
d® dz* dO 00 dx* e 00

and substitute % into the gradient descent scheme after setting up a loss function ¢:

de dTe(x*)\ " 0Te(z*)
(2.5) © <+ 06 a (I e ) 50
dTe(z*)

where o > 0 is the learning rate and (I — e ) is the Jacobian matrix Jg. This update
rule is costly due to the need to invert Jg, which motivates the search for other ways to speed
up the backpropagation process.

3. Related Works.

3.1. Deep Unrolling for Inverse Problems. Deep Unrolling [2, 7, 33, 43, 29, 28, 8] is used
to unpack deep neural networks, whose black-box nature hinders their training and interpre-
tation. Intuitively, each iteration is “unfolded” into smaller layers and then concatenated to
form a deep network. Therefore, these neural networks can be interpreted as an optimization
problem as in Eq. 2.2, with a fixed number of K iterations upon initialization, where the
regularizer R(x) can be parametrized to adaptably regularize the training process to mini-
mize the loss of each estimate (%), [14] Deep Unrolling has achieved successful results in other
inverse problems in imaging, such as low-dose CT [43], light-field photography [8], blind image
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deblurring [27], and emission tomography [32]. In our setup, this method corresponds to Eq.
2.4, with K < 400 being fixed. From prior numerical experiments [14, 36], K is eventually
a small, handcrafted number as a result of fine-tuning and limitations in time and space for
both training and inference.

3.2. Implicit Networks. Deep Equilibrium Models (DEQs), a type of implicit networks,
were proposed [5, 6, 42, 16, 26]. The advantage of DEQ lies in that it requires less memory
because it uses a weight-tied, input-injected design, where it only has one layer of actual
weights and the original input is fed into each of the identical layers. It solves the fix-point
and uses implicit differentiation to calculate the gradient for backpropagation. On the other
hand, SOTA deep feed-forward networks such as Deep Unrolling have memory issues since
they store intermediate values while iterating through each network layer.

4. Proposed Methodology. The convergence criterion of Tg(:) in Eq. 2.4 (DE-GRAD) is
discussed in more detail in [14], where Sg — I needs to be e—Lipschitz to ensure that Tg(+)
is contraction with parameter v € [0,1). We propose using Jacobian-free Backpropagation
(JFB) [10], a recently-introduced algorithm that updates © at a lower computational cost.
The idea is to circumvent the Jacobian calculation in (2.5) by replacing Jo with the identity
1, leading to an approximation of the true gradient:

_dl 9Tg (")
(4.1) Pe =1 00

which is still a descending direction for the loss function ¢ with more constraints on Tg
[10]. Note the difference here compared to implicit networks is that we are inverting the
identity matrix rather than the Jacobian Jg. As in other works, we used Anderson ac-
celeration [41] to facilitate the process of finding fixed points for the mapping Te(:) while
keeping torch.no_grad (). After finding the root z*, we resume the gradient tape and output
To(z*) = x* as an input of loss £. Then, PyTorch would calculate %Mgig*) = dcglf* %, which
is O(n) because we fix the dimension of parameters once training starts. Even though JFB is
not always performing the steepest descent, its gradient is much less costly to calculate, which
makes its overall cost lower while ensuring descending. As in other works, we used Anderson
acceleration [41] to facilitate the process of finding fixed points for the mapping Tg(-) while
keeping torch.no_grad (). After finding the root z*, we resume the gradient tape and output
To(z*) = x* as an input of loss £. Then, PyTorch would calculate dcglf* 6ng*) = dff* %, which
is O(n) because we fix the dimension of parameters once training starts.

JFB is not a gradient computation, but rather a descent direction.

5. Experimental results. We mimic the format in [14] while implementing our JEB ap-
proach. That is, we perform our experiments on the same dataset and use the same quality
measures for image reconstruction.

e Data: We use a subset of size 10,000 of the CelebA dataset [30], which contains around
200,000 centered human faces with annotations. Among the subset of 10,000, 8,000
images are used for training and the rest are left for validating and testing purposes.

e Preprocessing: Each image is resized into 128 x 128 pixels with 3 channels (RGB)
and normalized into range [0, 1] with mean % for each channel. The blurred images
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Algorithm 4.1 Learning with JFB

Require: Implicit network Ng(-) with weight-tying layers T(+). Set learning rate @ > 0.
for measurement-truth pair (d, z) in training set do
Find fixed point: z* = Tg(x*;d) with torch.no_grad()
Output: Ng(d) = Te(z*)
Calculate loss: ¢(x*, )

Update: © + © — ad‘ff* Bng*)

end for

are generated using Gaussian blurring kernels of size 5 x 5 with variance 5. The
measurements are then crafted by adding white Gaussian noise with standard deviation
o = 1072 to the blurred images.

Network Architecture: We use a convolutional neural network (CNN) structure
with 17 layers. Except for the first and last CNN layer, each intermediate layer is
followed by batch normalization and element-wise ReLLU activation function. We also
applied spectral normalization to each CNN layer to make sure that the mapping is
Lipschitz continuous with Lipschitz constant no greater than 1.

Training: With the aforementioned data and preprocessing specifics, the training
strictly follows Algorithm 1, where Tg(+) is the same as defined in Eq. 2.4. As part
of Te, the trainable network Sg(-) is pretrained as also practiced in [14] to observe an
improvement in reconstruction.

Visualization: We first visualize the average training and validation loss per image
over the number of epochs in Fig. 1, running on a sample of 2000 images, with an
80-20 training-validation split.

Loss Plot of JFB

—— train loss
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Figure 1. Training and Validation losses of the DE-GRAD model with JFB

We see that as the number of epochs increases, the training loss decreases, while

the validation loss remains relatively high. For this proof of concept, we are using

only a subset of our dataset, so it is hard for the model to generalize well to the
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validation images. However, the validation loss still shows a decreasing trend. Also,
the JFB algorithm only promises a descent direction for the loss function, rather
than a technique that learns the structure of the data distribution. Nevertheless, the
comparable PSNR and SSIM values reported in Table 2 were calculated with a JFB
model that achieves an MSE of about 100 per image (log 100 ~ 4.605).

Ground Truth

Noisy Blurred Image

Direct Inverse

Gradient Descent

JFB

Table 1
Visualization of JFB

We then visualize examples from the DE-GRAD model trained using JFB in Table 1,
using the same four images for each row. Ground Truths are the images in CelebA
dataset resized to 128 x 128 pixels. Noisy Blurred Images are generated by a 5 x 5
Gaussian kernel mentioned above. Direct Inverse images are the results of applying
the inverse of A on blurred images, which is defined in Eq. 2.1. Gradient Descent
images are obtained by applying gradient descent using mean squared error (MSE) as
the loss function. We enforce early stopping so that the results are not corrupted. JFB
images are obtained using Noisy Blurred images as inputs with JFB-trained weights
for the DE-GRAD model.

e Comparison of Quality: We compare our results obtained from JFB with other
state-of-the-art methods using total variation (TV), standard deep neural networks,
and DEQ. The metrics we use to assess the quality of reconstructed images are peak-
signal-to-noise ratio (PSNR, a positive number, best at +00) and structural similarity
index measure (SSIM, also positive, best at 1) [24]. The data in Table 2 are calculated
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on the testing dataset of size 2000. Although we have not yet achieved results better
than DEQs, which finds the true gradient in a complicated manner in Eq. 2.5, we
currently observe results that are competitive with other techniques.

Total Variation | Plug-n-Play [40] | Deep Equilibrium [14] | JEB (Ours)
PSNR 26.79 29.77 32.43 26.88
SSIM 0.86 0.88 0.94 0.91
Table 2

Comparison across Models

e Comparison of Time and Complexity: The most important part of our compari-
son is the speed of computation. While maintaining comparable image reconstruction
quality measured by PSNR and SSIM, the JFB algorithm is faster and easier to im-
plement with auto-differentiation libraries such as Tensorflow or PyTorch. Following
the update rule as Eq. 2.5, we can use PyTorch to obtain the Jacobian matrix of
each entry of Tg(z*) with respect to z* and then calculate the inverse of I — dTC‘?T(f*),

which is known to be of complexity O(n3), where n is the dimension of the Euclidean
space that the true underlying images (and measurements) live in. Using the CelebA
dataset, after preprocessing, n = 128 x 128 x 3 = 49152.
SWEF: JFB implementation could be discussed in proposed methodology in Sec. 4.
When implementing other models with implicit differentiation, in addition to calculat-
ing the inverse (1 — %(f*))_l, we have to multiply it by d‘i{ and Wg)i(@x*) to its left and
right, respectively, which is also O(n) SWE: double check FLOPs for matrix vector
multiply. Compared to the calculation for JFB, the only significant time difference
is the computation of this inverse matrix. To estimate this difference, we initialize
a network and then estimate this computation time as a proof of concept. Nailvely
taking the inverse by applying numpy.linalg.inv() depletes all possible RAM (more
than 32 Gigabytes). Hence, we resort to inverting a 4000 by 4000 matrix, which takes
about 2.27 seconds, not to mention the additional work spent by constructing the Ja-
cobian using torch.autograd.grad(), which takes in a scalar output and calculates
its gradient with respect to another tensor on the gradient tape. SWEF: we should
discuss this section.

6. Conclusions. In this paper, we explored Jacobian-free Backpropagation for implicit
networks with applications in image deblurring. Our approach recovers images rather effec-
tively across the testing dataset. Moreover, JFB is competitive with other state-of-the-art
methods whose hand-crafted parameters have been fine-tuned across all stages. We also
demonstrated the advantage of JFB in terms of its computational complexity and easiness for
implementation in practice. Future work involves application to other inverse problems like
denoising [34, 38], geophysical imaging [17, 11, 12, 25], and more.
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